Novel Complex Valued Neural Networks
نویسندگان
چکیده
In view of many applications, in recent years, there has been increasing interest in complex valued neural networks. In this paper, it is reasoned that transforming real valued signals into complex valued signals (using Discrete Fourier Transform) and processing them in that domain is equivalent to processing real valued signals. This approach could have many advantages. Also neural networks based on a novel model of neuron are proposed. Some interesting open questions are proposed.
منابع مشابه
On the Appropriateness of Complex-Valued Neural Networks for Speech Enhancement
Although complex-valued neural networks (CVNNs) – networks which can operate with complex arithmetic – have been around for a while, they have not been given reconsideration since the breakthrough of deep network architectures. This paper presents a critical assessment whether the novel tool set of deep neural networks (DNNs) should be extended to complex-valued arithmetic. Indeed, with DNNs ma...
متن کاملGENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK
The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...
متن کاملFast Complex Valued Time Delay Neural Networks
Here, a new idea to speed up the operation of complex valued time delay neural networks is presented. The whole data are collected together in a long vector and then tested as a one input pattern. The proposed fast complex valued time delay neural networks uses cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically...
متن کاملGlobal Stability Analysis for Complex-Valued Recurrent Neural Networks and Its Application to Convex Optimization Problems
INTrODUCTION Recurrent neural networks whose neurons are fully interconnected have been utilized to implement associative memories and solve optimization problems. These networks are regarded as nonlinear dynamical feedback systems. Stability properties of this class of dynamical networks are an important issue from applications point of view. ABSTrACT Global stability analysis for complex-valu...
متن کاملNatural Gradient Descent for Training Stochastic Complex-Valued Neural Networks
In this paper, the natural gradient descent method for the multilayer stochastic complex-valued neural networks is considered, and the natural gradient is given for a single stochastic complex-valued neuron as an example. Since the space of the learnable parameters of stochastic complex-valued neural networks is not the Euclidean space but a curved manifold, the complex-valued natural gradient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006